next up previous contents
Next: BUM model equations Up: XNBC8 User Manual V8.21 Previous: PUM model equations

Subsections


   
LIM model equations

Equations

The temporal evolution of the potential and the threshold of NBC neurons in a network of N neurons takes place according to the following equations:

Vi(t)=Vi(t-1)(1-($\displaystyle {\frac{\Delta t}{\tau_{V}}}$+$\displaystyle {\frac{\Delta t \times U_{rest}}{\tau_{V}}}$)

$ \theta$[y] is the Heaviside step function

$\displaystyle \theta$[y] = $\displaystyle \left\{\vphantom{ \begin{array}{ll}
0 & if\;y < 0 \\
1 & otherwise
\end{array}}\right.$$\displaystyle \begin{array}{ll}
0 & if\;y < 0 \\
1 & otherwise
\end{array}$ $\displaystyle \left.\vphantom{ \begin{array}{ll}
0 & if\;y < 0 \\
1 & otherwise
\end{array}}\right.$

Urest,  U(0),  $ \tau_{V}^{}$,  VpspMax,  srest,  SA,  $ \tau_{s}^{}$ are the parameters which are set at the beginning of each simulation.

The threshold equation shows that the value of the threshold of a neuron at a given time tdepends on the firing history of the neuron. In fact by replacing F, the following expression for the threshold of a neuron which has fired pspikes, the kth spike happening at time Tk, is obtained:

s(t)=srest(1+e- $\scriptstyle {\frac{t-T_{1}}{\tau_{s}}}$)+SAe- $\scriptstyle {\frac{t}{\tau_{s}}}$ $\displaystyle \sum_{k=1}^{p}$e$\scriptstyle {\frac{T_{k}}{\tau_{s}}}$

Default values

These are the default values of a Leaky Integrator Model as stored in the .L_unit file:

ModelType: L
RestPotential: -70.0000
TimeCsteMbPot: 10.0000
Threshold: -65.0000
EpspSize: 0.5000
IpspSize: 0.0000
NoiseMean: 0.0000
NoiseSd: 0.0000
NoiseFilter: 0
Capacity: 1.0000000000
TimeStep: 1.000
PostSpikePotential: -85.0000
Adaptation: 20.0000
E_K: -90.0000
E_Na: 65.0000
PosReversalPot: 0.0000
NegReversalPot: -90.0000
TimeCsteThreshold: 20.0000
EpspSd: 0.0000
IpspSd: 0.0000
FilterResistance: 10.000
Fatigue: 0.000
LessFatigue: 0

If modified with a text editor, remind that the labels are case sensitive.



Jean-Francois Vibert
1998-08-26