next up previous contents
Next: LIM model equations Up: XNBC8 User Manual V8.21 Previous: Files of XNBC

Subsections


   
PUM model equations

Equations

The temporal evolution of the potential and the threshold of NBC neurons in a network of N neurons takes place according to the following equations:

Vi(t)=U(t-Tpi)+ $\displaystyle \left[\vphantom{\sum_{j=1}^{N}(W_{ji}\int_{T_{p}^{i}}^{t}x_{j}(r -
d_{ji})\,V_{psp}(t-r)\,dr) + \,B(t)}\right.$$\displaystyle \sum_{j=1}^{N}$(Wji$\displaystyle \int_{T_{p}^{i}}^{t}$xj(r - djiVpsp(t - r) dr) +  B(t)$\displaystyle \left.\vphantom{\sum_{j=1}^{N}(W_{ji}\int_{T_{p}^{i}}^{t}x_{j}(r -
d_{ji})\,V_{psp}(t-r)\,dr) + \,B(t)}\right]$ m(t-Tpi)
 
si(t) = F(t - Tpisi(Tpi) +  SA)
 
xi(t) = $\displaystyle \theta$[Vi(t) - si(t)]

where

U(t)=Urest+(U(0)-Urest)e-t/$\scriptstyle \tau_{V}$
 
Vpsp(t)=$\displaystyle \left\{\vphantom{
\begin{array}{ll}
V_{pspMax}\,(t/\tau_{attack})...
...-\tau_{attack}}{\tau_{decay}}}
& when\;\tau_{attack}<t\\
\end{array} }\right.$$\displaystyle \begin{array}{ll}
V_{pspMax}\,(t/\tau_{attack})\,e^{-\frac{t}{\ta...
...{-\frac{t-\tau_{attack}}{\tau_{decay}}}
& when\;\tau_{attack}<t\\
\end{array}$ $\displaystyle \left.\vphantom{
\begin{array}{ll}
V_{pspMax}\,(t/\tau_{attack})\...
...-\tau_{attack}}{\tau_{decay}}}
& when\;\tau_{attack}<t\\
\end{array} }\right.$
 
m(t)=1-e-t/$\scriptstyle \tau_{shunt}$
 
F(t, K) = srest + (K - srest)e-t/$\scriptstyle \tau_{s}$

$ \theta$[y] is the Heaviside step function

$\displaystyle \theta$[y] = $\displaystyle \left\{\vphantom{ \begin{array}{ll}
0 & if\;y < 0 \\
1 & otherwise
\end{array}}\right.$$\displaystyle \begin{array}{ll}
0 & if\;y < 0 \\
1 & otherwise
\end{array}$ $\displaystyle \left.\vphantom{ \begin{array}{ll}
0 & if\;y < 0 \\
1 & otherwise
\end{array}}\right.$

Urest,  U(0),  $ \tau_{V}^{}$,  VpspMax,  $ \tau_{attack}^{}$,  $ \tau_{decay}^{}$,  $ \tau_{shunt}^{}$,  srest,  SA,  $ \tau_{s}^{}$ are the parameters which are set at the beginning of each simulation.

The threshold equation shows that the value of the threshold of a neuron at a given time tdepends on the firing history of the neuron. In fact by replacing F, the following expression for the threshold of a neuron which has fired pspikes, the kth spike happening at time Tk, is obtained:

s(t)=srest(1+e- $\scriptstyle {\frac{t-T_{1}}{\tau_{s}}}$)+SAe- $\scriptstyle {\frac{t}{\tau_{s}}}$ $\displaystyle \sum_{k=1}^{p}$e$\scriptstyle {\frac{T_{k}}{\tau_{s}}}$

Default values

These are the default values of a Phenomenologic Model as stored in the .P_unit file:

ModelType: P
RestPotential: -70.0000
TimeCsteMbPot: 10.0000
Threshold: -65.0000
EpspSize: 0.5000
IpspSize: 0.0000
NoiseMean: 0.0000
NoiseSd: 0.0000
NoiseFilter: 0
Capacity: 1.0000000000
TimeStep: 1.000
PostSpikePotential: -85.0000
Adaptation: 20.0000
E_K: -90.0000
E_Na: 65.0000
PosReversalPot: 0.0000
NegReversalPot: -90.0000
TimeCsteThreshold: 20.0000
EpspSd: 0.0000
EpspAttack: 2.0000
EpspDecay: 5.0000
IpspSd: 0.0000
IpspAttack: 2.0000
IpspDecay: 5.0000
MembraneShunt: 20.0000
FisterResistance: 10.000
Fatigue: 0.000
LessFatigue: 0

If modified with a text editor, remind that the labels are case sensitive.


next up previous contents
Next: LIM model equations Up: XNBC8 User Manual V8.21 Previous: Files of XNBC
Jean-Francois Vibert
1998-08-26